Math, asked by aanjaliparkar267, 1 month ago

If the zeroes of quadratic polynomial x2 + (a+ 1)x + b are 2 and -3 then find a and b.

Answers

Answered by sahupurvanshi
2

2016 is anwer please mark as brain list you will also check in calculater

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:2 \: and \:  - 3 \: are \: zeroes \: of \:  {x}^{2} + (a + 1)x + b

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

So,

\rm :\longmapsto\: 2 + ( - 3)  =  - \dfrac{(a + 1)}{1}

\rm :\longmapsto\:2 - 3 =  - a - 1

\rm :\longmapsto\: - 1 =  - a - 1

\rm :\longmapsto\:   - a =  - 1 + 1

\rm :\longmapsto\:   - a =  0

\bf\implies \:a = 0

Also, we know that,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\:(2) \times ( - 3) = \dfrac{b}{1}

\bf\implies \:b =  - 6

Alternative Method

Given that

\rm :\longmapsto\:2 \: and \:  - 3 \: are \: zeroes \: of \:  {x}^{2} + (a + 1)x + b

Let assume that

\rm :\longmapsto\:f(x) \:  = \:  {x}^{2} + (a + 1)x + b

We know,

Factor theorem states that, if a is a zero of polynomial f(x), then f( a ) = 0

So, using factor theorem, we have

\rm :\longmapsto\:f(2) = 0

\rm :\longmapsto\: \:  {2}^{2} +2 (a + 1) + b = 0

\rm :\longmapsto\: \:  4 +2a +2 + b = 0

\rm :\longmapsto\: \:  2a  +  b + 6 = 0

\bf :\longmapsto\: \:  b =  - 6 - 2a -  -  - (1)

Also,

\rm :\longmapsto\:f( - 3) = 0

\rm :\longmapsto\: \:  {( - 3)}^{2}  - 3 (a + 1) + b = 0

\rm :\longmapsto\: \:  9 - 3a  - 3 + b = 0

\rm :\longmapsto\: \:  6 - 3a + b = 0

\rm :\longmapsto\: \:  6 - 3a  - 6 - 2a= 0

[ Using equation (1) ]

\rm :\longmapsto\: - 5a = 0

\bf\implies \:a = 0

Now, Substitute the value of a in equation (2), we get

\rm :\longmapsto\:b  =  - 6 - 2(0)

\rm :\longmapsto\:b  =  - 6 -0

\bf\implies \:b =  - 6

Similar questions