If the zeroes of the cubic polynomial are - 2,-3,and - 1 then form a cubic polynomial
Answers
Answer:
Here, the cubic polynomial is=x^3+2x^2-5x-6=0
Step-by-step explanation:
Let the zeroes be (alpha), (beta), ( gama) respectively.
As here we have to find out a cubic polynomial, So,
Now, find out the sum of the zeroes=(alpha+beta+gama)
=The sum of the product of zeroes=(alpha×beta+beta×gama+gama×alpha)
=Product of the zeroes=(alpha×beta×gama)
Now, after putting the values of these all, we get,
=Sum of zeroes=2+(-3)+(-1)=2-3-1=-2
=Sum of product of zeroes=2×(-3)+(-3)×(-1)+(-1)×2
=(-6)+3+(-2)=3-8=-5
=Product of zeroes=2×(-3)×(-1)=6
Now, as there is considered a formula to find out a cubic polynomial is,
=x^3-(alpha+beta+gama)x^2+(alpha. beta+beta.gama+gama.alpha)x-(alpha.beta.gama)
So, by putting values of all of these, we get,
=x^3-(-2)x^2+(-5)x-6=0
=x^3+2x^2-5x-6=0 is our poynomial.
I hope you would get help by my answer.
Thank you.