Math, asked by pulas, 1 year ago

if the zeroes of the polynomial ax2+bx+b=0 are in the ratio m:n then find the value of root m/n+rootn/m

Answers

Answered by rohit4620
16

this is the solution

Attachments:
Answered by mysticd
11

 Let \: \alpha \: and \: \beta \: are \: zeroes \\of \: the \: polynomial \: ax^{2}+bx+b = 0

 \alpha : \beta = m : n\: (given)

 \implies \frac{\alpha}{\beta} = \frac{m}{n} \: --(1)

 i )Sum \:of \: the\: zeroes = \frac{-b}{a}\\\implies \alpha + \beta = \frac{-b}{a}\: --(2)

 ii ) Product \:of \: the\: zeroes = \frac{b}{a}

 \implies \alpha \beta = \frac{b}{a}\: --(3)

 Now, \: Value \: of \: \sqrt{\frac{m}{n}} +  \sqrt{\frac{n}{m}} \\= \sqrt{\frac{\alpha}{\beta}} +  \sqrt{\frac{\beta}{\alpha}} \\=\frac{ \sqrt{\alpha}^{2} + \sqrt{\beta}^{2}}{\sqrt{\alpha \beta}} \\= \frac{\alpha + \beta}{\sqrt{\alpha \beta} }\\= \frac{\frac{-b}{a}}{\sqrt{\frac{b}{a}}} \\= - \sqrt{\frac{b}{a}}

Therefore.,

 \red {Value \: of \: \sqrt{\frac{m}{n}} +  \sqrt{\frac{n}{m}} } \green {= - \sqrt{\frac{b}{a}} }

•••♪

Similar questions