If the zeroes of the polynomial f ( x ) = x^3-3x^2+x+1 are a-b, a, a+b, find a and b
Answers
Answered by
15
Given that a-b, a, a+b are roots of given polynomial x³-3x²+x+1
From this polynomial,
Sum of the roots ⇒ a-b+a+a+b = -coefficient of x²/ coefficient of x³
⇒ 3a = -(-3)/1 = 3
a = 1 --------- One of the root (1)
Product of roots ⇒ (a-b)(a+b)a = -constant/coefficient of x³
⇒ (a²-b²)a = -1/1
⇒ a³ - ab² = -1 {placing the value a = 1 from (1)}
⇒ 1 - b² = -1
⇒ b² = 2
⇒ b = √2
∴ a = 1, b = √2
From this polynomial,
Sum of the roots ⇒ a-b+a+a+b = -coefficient of x²/ coefficient of x³
⇒ 3a = -(-3)/1 = 3
a = 1 --------- One of the root (1)
Product of roots ⇒ (a-b)(a+b)a = -constant/coefficient of x³
⇒ (a²-b²)a = -1/1
⇒ a³ - ab² = -1 {placing the value a = 1 from (1)}
⇒ 1 - b² = -1
⇒ b² = 2
⇒ b = √2
∴ a = 1, b = √2
Similar questions