if the zeroes of the polynomial p (x) = x^3 - 9x^2 + 23x - 15 are a-d, a, a+d. find the values of a and d. also find all the zeroes of the polynomial p (x).
Answers
= sum of zeros = A+B+C (alpha+beta+gamma)
= -b/a = a-d+a+a+d
= 9= 3a
= a= 3
= product of zeros = A×B×C
= -d/a =(a-d) (a+d) a
= 15 = (a2-d2)3
= 15 = (9-d2)3
= 15= 27-3d2
= 3d2= 12
= d2 = 4
= d= +minus2
= then the zeros are 1,5,3.
Answer:
⇒ zeros of the P(x) = x³ - 9x² + 23x - 15 are 1, 2, 5
Step-by-step explanation:
Given Polynomial P(x) = x³ - 9x² + 23x - 15
a - d, a and a + d are the roots of P(x)
here we need to find zeros of the P(x)
⇒ if P(y) = Ax³ + Bx² + Cx + D and β, λ are be the roots then
sum of the roots α + β + λ =
product of the roots = αβγ =
⇒ P(x) = x³ - 9x² + 23x - 15 with Ax³ + Bx² + Cx + D
⇒ A = 1, B = - 9, C= 23 and D = - 15
⇒ sum of the roots a - d + a + a + d = = -[-9/1] = 9
3a = 9
a = 3
⇒ (a - d) (a) (a + d) = = -15/1
⇒ ( a² - d²) (a) = - 15
⇒ ( 9 - d²) (3) = - 15
⇒ 9 - d² = - 5
⇒ - d² = -4
⇒ d = 2
a - d = 3 - 2 = 1 and a+d = 3 + 2 = 5
⇒ zeros of the P(x) = x³ - 9x² + 23x - 15 are 1, 2, 5