Math, asked by mohammedfaizan258, 1 year ago

if the zeroes of the polynomial x^3-14x^2+37x-60 are alpha,beta,gamma,then find
(i) alpha +beta+ gamma
(ii) alpha beta+beta gamma+gamma alpha
(iii)alpha beta gamma

Answers

Answered by VijayaLaxmiMehra1
0
\textbf{Solution}

Given polynomial

 \\ x {}^{3} - 14x {}^{2} + 37x - 60 \\

On comparing with ax^3 + bx^2 + cx + d we get

a = 1 , b = - 14 , c = 37 , d = - 60

i ) Sum of zeroes = - b / a

 \alpha + \beta + \gamma = \frac{ - b}{a}

 \alpha + \beta + \gamma = \frac{14}{1} \\ \\ \alpha + \beta + \gamma = 14

ii ) Sum of product of zeroes = c / a

 \alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a} \\ \\
 \alpha \beta + \beta \gamma + \gamma \alpha = 37

iii ) Product of zeroes = - d / a

 \alpha \beta \gamma = \frac{ - d}{a} \\ \\
 \alpha \beta \gamma = 60

\textbf{Hope it helps!!}
Similar questions