Math, asked by mohammedfaizan258, 1 year ago

if the zeroes of the polynomial x^3-14x^2+37x-60 are alpha,beta,gamma,then find
(i) alpha +beta+ gamma
(ii) alpha beta+beta gamma+gamma alpha
(iii) alpha beta gamma

Answers

Answered by MOSFET01
1
 \\\implies x^{3}-14x^{2}+37x-60

 \\ \implies in\: equation \\\\ax^{3}+bx^{2}+cx+d \\\\ \alpha+\beta+\gamma= \frac{-b}{a}\\\\ \alpha\beta+\beta\gamma+\gamma\alpha= \frac{c}{a}\\\\ \alpha\beta\gamma = \frac{-d}{a}

 (1)x^{3} + (-14)x^{2} + (37)x + (-60) \\\\a=1\\b=-14\\c=37\\d=-60

 \alpha+\beta+\gamma\\= \frac{-b}{a}\\=\frac{+14}{1}\\\boxed{\implies{14}}

\alpha\beta+\beta\gamma+\gamma\alpha= \frac{c}{a}\\=\frac{37}{1} \\\boxed{\implies{37}}

\\\alpha\beta\gamma = \frac{-d}{a}\\=\frac{+60}{1}\\\boxed{\implies{60}}

MOSFET01: sorry for taking more time
mohammedfaizan258: can you help me to solve one more question
MOSFET01: okay
mohammedfaizan258: this is the question
mohammedfaizan258: Prove that 2x^4-6x^3+3x^2+3x-2 is exactly divisible by x^2-3x+2.
MOSFET01: okay i try it
mohammedfaizan258: ok
MOSFET01: i am using actual division method
MOSFET01: see in inbox
mohammedfaizan258: yah i saw
Similar questions