Math, asked by lakshmivasarla30, 10 months ago

if the zeroes of the polynomial x^3-3x^2+x+1 are alfa-beta,alfa,alfa+beta then alfa= and beta=​

Answers

Answered by Anonymous
28

\huge\bf{\red{\overbrace{\underbrace{\purple{Given:}}}}}

A\:cubic\:polynomial\:x^{3}-3x^{2}+x+1=p(x) (say)

\alpha, \alpha-\beta, \alpha+\beta\:are \:its\:zeroes

\huge\bf{\red{\overbrace{\underbrace{\purple{To\:\:Find:}}}}}

The\: value \:of\:\alpha\:and\:\beta

\huge\bf{\red {\overbrace{\underbrace{\purple{Concept\:\:Used:}}}}}

★We will use the formula for finding the sum of the zeroes of a, cubic polynomial, similar to ax^{3}+bx^{2}+cx+d form.

\huge\bf{\red {\overbrace{\underbrace{\purple{Answer:}}}}}

We have,

\longrightarrow x^{3}-3x^{2}+x+1=p(x)

With respect to standard formax^{3}+bx^{2}+cx+d

a = 1

b = -3

c = 1

d = 1

______________________________________

So, sum of zeroes is given by,

\large\green{\boxed{\phi+\Delta+\gamma=\dfrac{-b}{a}=\dfrac{-Coefficient\:of\;x^{2}}{Coefficient\:of\:x^{3}}}}

where,

\phi,\Delta\:and\:\gamma are the zeroes of the cubic polynomial.

Now , using this,

\implies \dfrac{-b}{a}=\alpha+\alpha-\beta \alpha+\beta

\implies \dfrac{-b}{a}=\alpha+\alpha-\cancel{\beta} +\alpha+\cancel{\beta}

\implies \dfrac{-(-3) }{1}=3\alpha

\implies 3=3\alpha

\implies \alpha=\frac{3}{3}

\implies \alpha=\frac{\cancel{3}}{\cancel{3}}

\red{\underline{\boxed{\purple{.\degree.\:\alpha=1}}}}

______________________________________

Now,

\alpha=1 is a zero.

So, product of zeroes.

\large\green{\boxed{\phi\Delta\gamma=\dfrac{-d}{a}=\dfrac{Constant\:\:term}{Coefficient\:of\:x^{3}}}}

\implies \alpha(\alpha+\beta) (\alpha-\beta) =\frac{-d}{a}

\implies \alpha[(\alpha)^{2}-(\beta) ^{2}]=-1

\implies 1(1-\beta^{2})=-1

\implies  \beta^{2}=1+1

\implies \beta^{2}=2

\green{\underline{\boxed{\orange{.\degree.\beta=\sqrt{2}}}}}

Therefore the value of \alpha is 1 & \beta is 2.

Answered by Anonymous
3

 \huge \bf \red{answer}

Attachments:
Similar questions