Math, asked by krishshah845, 1 month ago

if the zeroes of the polynomial x^3-9x^2+2x+21 are p-q, p, p+q, find the values of p and q​

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{p-q,p,p+q\;are\;zerroes\;of\;x^3-9x^2+2x+21}

\underline{\textbf{To find:}}

\textsf{The values of p and q}

\underline{\textbf{Solution:}}

\mathsf{Consider,\;\;x^3-9x^2+2x+21}

\mathsf{Sum\;of\;the\;roots=\dfrac{-(-9)}{1}}

\implies\mathsf{p-q+p+p+q=9}

\implies\mathsf{3p=9}

\implies\mathsf{p=\dfrac{9}{3}}

\implies\boxed{\mathsf{p=3}}

\mathsf{Product\;of\;the\;roots=\dfrac{-(21)}{1}}

\implies\mathsf{(p-q)p(p+q)=-21}

\implies\mathsf{(p^2-q^2)p=-21}

\implies\mathsf{(3^2-q^2)3=-21}

\implies\mathsf{9-q^2=\dfrac{-21}{3}}

\implies\mathsf{9-q^2=-7}

\implies\mathsf{-q^2=-7-9}

\implies\mathsf{-q^2=-16}

\implies\mathsf{q^2=16}

\implies\boxed{\mathsf{q=\pm\,4}}

\therefore\mathsf{p=3\;\;\&\;\;q=\pm\,4}

\underline{\textbf{Find more:}}

If the zeroes of cubic polynomial x3-15x2+74x-120 are the form a,a+b and a+2b for some positive real number, than the value of a and b are​

https://brainly.in/question/40663788

Answered by fahims8080
2

Given is a polynomial Equation: x^3-9x^2+2x+21=0

And its zeroes are p-q ,p & p+q

We need to find the value of p and q

As we know the sum of zeroes is =  \frac{-b}{a} and the product the roots gives = \frac{-d}{a}

Here in the given equation:-

ax^3-bx^2+cx+d =x^3-9x^2+2x+21

i.e. a=1, b=9,c=2 ,  d= 21

Hence, the sum of zeroes = \frac{-b}{a}

           (p+q)+p+(p-q)=\frac{-(-9)}{1}

                   3p=\frac{-(-9)}{1}

                    p=\frac{-(-9)}{3}    

                    p=\frac{9}{3}=3        

∴p=3    

Also the product of zeroes is = \frac{-d}{a}

  (p+q)*p*(p-q)=\frac{-21}{1}

                p(p^{2} -q^{2}) =\frac{-21}{1}

                   p^{3} -pq^{2} =\frac{-21}{1}

                   3^{3} -3q^{2} =\frac{-21}{1}

                        -3q^{2} =-21-3^{3}

                        -3q^{2} =-21-27    

                        -3q^{2} =-48    

                            q^{2} =\frac{48}{3}

                            q^{2} =16

                             q=\sqrt[2]{16} =4

∴q=4

So, the value of p=3 and q=4

Similar questions