If the zeroes of the polynomial x³-3x²+x+1 are a-b, a, a+b, find a and b
Answers
Answer:
Step-by-step explanation:
the sum of the zeroes will be 3 as the sum always equals to = -(b)/a for any polynomial like of the form = ax3 + bx2 + cx + d,
so
a-b + a + a+b = 3
3a = 3
a = 1
also the product of the zeroes = -d/a
(a-b)(a+b)(a)= -1
(1-b)(1+b) = -1
1 - = -1
2 =
b =
therefore, a and b is equal to 1 and respectively
hope this helps
please mark brainliest
ॐ ॐ
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
⎟⎟ ✪✪ QUESTION ✪✪ ⎟⎟
If the zeroes of the polynomial x³-3x²+x+1 are a-b, a, a+b, find a and b
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
⎟⎟ ✰✰ ANSWER ✰✰ ⎟⎟
Given polynomial :- x³- 3x²+ x + 1
Since, (a + b), a, (a +b) are the zeroes of the polynomial x³- 3x²+ x + 1 .
∴ , Sum of the zeroes
⇒ (a - b) + a + (a + b)
⇒ -(-3 ) / 1 = 3
So, 3a = 3 ⇒ a = 1
∴ Sum of the products of its zeroes taken 2 at a time.
= a (a - b) + a (a + b) + (a + b) (a - b)
= 1/1 = 1
⇒ a²- ab + a² + ab + a²- b² = 1
⇒ 3a²- b² = 1
So, 3 ( 1 )²- b² = 1
⇒ 3 - b² = 1
⇒ b² = 2 ⇒b = √2 = ± √2
Here, a = 1 and b = ± √2
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬