English, asked by missRoyaltiesRozzer, 1 month ago

If the zeroes of the polynomial x3 – 3x2 + x + 1 are a-b, a, a + b, find a and b.
❌ no spam pleach ♡​

Answers

Answered by Anonymous
1042

ᴄᴏʀʀᴇᴄᴛ qᴜᴇꜱᴛɪᴏɴ:

  • The zeroes of the polynomial
  • x³ – 3x² + x + 1 are— a-b, a, a + b

ᴛᴏ ꜰɪɴᴅ:

  • A and B

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

For a Cubic Polynomial:

~~~~~~~~~ p(x) = ax³ + bx² + cx + d

With zeroes \alpha , \beta and \gamma

We have,

\alpha + \beta + \gamma = \frac{ - b}{a}

  \alpha  \beta  +  \beta  \gamma   +  \gamma  \alpha  =  \frac{c}{a}

 \alpha  \beta  \gamma  =  \frac{ - d}{a}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

NOW-

~~~~~~~~~ p(x) = x³ - 3x² + x + 1

Comparing with p(x) = Ax³ + Bx² + Cx + D

A = 1

B = -3

C = 1

D = 1

Zeroes are—

\alpha  = a - b

\beta  = a

\gamma  = ab

 \\ \\

Sum Of Zeroes—

~~~~~~~~~ \implies Sum of zeroes = \frac{ - b}{a}

~~~~~~~~~ \implies \alpha  +  \beta  +  \gamma  =  \frac{ - b}{a}

~~~~~~~~~ \implies a - b + a + a + b = 3

~~~~~~~~~ \implies 3a = 3

~~~~~~~~~ \implies a = 1

 \\ \\

Sum Of Product Zeroes—

Sum of product zeroes = \frac{c}{a}

\implies \alpha  \beta  +   \beta   \gamma  +  \gamma  \alpha  =  \frac{c}{a}

 \\ \\

⟶ (a-b)a + a(a+b) + (a+b) (a-b) = 1

⟶ a² - ba + a² + ab + a² - b² = 1

⟶ a² + a² + a² - b² = 1

⟶ 3a² - b² = 1

PUTTING A=1

⟶ 3(1)² - b² = 1

⟶ 3 - b² = 1

⟶ 3 - a = b²

⟶ b² = 2

⟶ b =  ±  \sqrt{2}

 \\ \\

Therefore,

  • a = 1 & b =  ±  \sqrt{2}

_____________________________________

Answered by sumitashok11
6

Answer:

zero in not equal to a

Explanation:

p(x) putting the value of x is (0)

p(x) = x3-3x2+x+1

= 0*3-3*02+0+1

= 1

Similar questions