Math, asked by Sureshj3314, 1 year ago

If the zeroes of the polynomial x3-3x2+x+1 are a-b a a+b find a and b

Answers

Answered by agrawalunnati1098
5

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
4

\large{\underline{\underline{\textsf{\maltese\: {\red{Given :-}}}}}}

❖ Cubic Polynomial = x³ - 3x² + x + 1

❖ Zeros of the Cubic Polynomial = (a - b) , a , (a + b)

\\

\large{\underline{\underline{\textsf{\maltese\: {\red{To Find :-}}}}}}

❖ Value of a and b = ?

\\

\large{\underline{\underline{\textsf{\maltese\: {\red{Concept Implemented :-}}}}}}

For a cubic polynomial ,

ax³ + bx² + cx + d

Whose zeros are α , β and γ. Then ,

\\

☯︎ Sum of zeros = α + β + γ = \sf\dfrac{-b}{a}

\\

☯︎ Sum of the product of two convective zeros = αβ + βγ + γα = \sf\dfrac{c}{a}

\\

☯︎ Product of zeros = αβγ = \sf\dfrac{-d}{a}

\\

\large{\underline{\underline{\textsf{\maltese\: {\red{Solution :-}}}}}}

Comparing the Cubic Polynomial (x³ + 3x² + x + 1) with the standard form of Cubic Polynomial (ax³ + bx² + cx + d) we get,

❃ a = 1

❃ b = -3

❃ c = 1

❃ d = 1

\\

❃ α = (a - b)

❃ β = a

❃ γ = (a + b)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

☯︎ Sum of zeros = α + β + γ = \sf\dfrac{-b}{a}

\\

❂ α + β + γ = (a - b) + a + (a + b)

❂ α + β + γ = a - b + a + a + b

❂ α + β + γ = 3a⠀⠀------【1】

\\

❂ α + β + γ = \sf\dfrac{-b}{a}

❂ α + β + γ = \sf\dfrac{-(-3)}{1}

❂ α + β + γ = 3 ⠀------【2】

\\

From Equation 【1】and 【2】. We get,

⇒ 3a = 3

⇒ a = \sf\dfrac{-3}{3}

⇒ a = 1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

☯︎ Product of zeros = αβγ = \sf\dfrac{-d}{a}

\\

❂ αβγ = (a - b) × a × (a + b)

❂ αβγ =⠀(a² - b²)a⠀[(a + b)(a - b) = a² - b²]

❂ αβγ = (a² - b²)a

❂ αβγ = {(1)² - b²}1⠀‎‏‏‏‏⠀‎‏‏[Putting the value of a that we've obtained]

❂ αβγ = (1 - b²)1

❂ αβγ = 1 - b²⠀⠀------‏‏【3】

\\

❂ αβγ = \sf\dfrac{-d}{a}

❂ αβγ = \sf\dfrac{-1}{1}

❂ αβγ = -1 ⠀⠀‎‏‏⠀⠀------【4】

\\

From Equation 【3】and 【4】. We get,

⇒ 1 - b² = -1

⇒ -b² = -1 - 1

⇒ -b² = -2

⇒ b = ±√2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

a = 1

b = ±√2

Similar questions