if the zeroes of the polynomial x3-3x2+x+1are a-b,a,a+b,find a and b
Answers
Answered by
17
Given that a-b, a, a+b are roots of given polynomial x³-3x²+x+1
From this polynomial,
Sum of the roots ⇒ a-b+a+a+b = -coefficient of x²/ coefficient of x³
⇒ 3a = -(-3)/1 = 3
a = 1 --------- One of the root (1)
Product of roots ⇒ (a-b)(a+b)a = -constant/coefficient of x³
⇒ (a²-b²)a = -1/1
⇒ a³ - ab² = -1 {placing the value a = 1 from (1)}
⇒ 1 - b² = -1
⇒ b² = 2
⇒ b = √2
∴ a = 1, b = √2
From this polynomial,
Sum of the roots ⇒ a-b+a+a+b = -coefficient of x²/ coefficient of x³
⇒ 3a = -(-3)/1 = 3
a = 1 --------- One of the root (1)
Product of roots ⇒ (a-b)(a+b)a = -constant/coefficient of x³
⇒ (a²-b²)a = -1/1
⇒ a³ - ab² = -1 {placing the value a = 1 from (1)}
⇒ 1 - b² = -1
⇒ b² = 2
⇒ b = √2
∴ a = 1, b = √2
Similar questions