Math, asked by UPADHYAYGOLU39, 1 year ago

If the zeroes of the quadratic polynomial ax2 + bx + c, c ≠ 0 are equal, then (A) c and a have opposite signs (B) c and b have opposite signs (C) c and a have the same sign (D) c and b have the same sign

Answers

Answered by karan7763030051
10

Answer:

option A. c and a have + sign

Answered by Anonymous
19

<<solution>>

ax²+bx+c=0

+(b/a)X+(c/a)=0

let the zeroes are p and q...

therefore

p+q=-b/a

pq=c/a

now.....

(p-q)²=(p+q)²-4pq

=>p-q=[(b²/)-4c/a]

now ....

p+q=b/a

p-q=√[(b²/a²)-4c/a]

____________________

2p=(b/a)+√[(b²/a²)-4c/a]

p  =  \frac{ \frac{b}{a}  +  \sqrt{ \frac{b {}^{2} }{a {}^{2}  }   -  \frac{4c}{a} } }{2}

and ...

q=  \frac{ \frac{b}{a}   -  \sqrt{ \frac{b {}^{2} }{a {}^{2}  }   -  \frac{4c}{a} } }{2}

now...

p = q \\  =   &gt;  \frac{ \frac{b}{a}  +  \sqrt{ \frac{b {}^{2} }{a {}^{2}  }   -  \frac{4c}{a} } }{2}  =  \frac{ \frac{b}{a}  -  \sqrt{ \frac{b {}^{2} }{a {}^{2}  }   -  \frac{4c}{a} } }{2}  \\  =  &gt;  \frac{b {}^{2} }{a {}^{2} }  =  \frac{4c}{a}  \\  =  &gt; b {}^{2}  = 4ac

option (c) c and a have the same sign

Similar questions