Math, asked by prathamdvanjani, 1 month ago

If the zeroes of the quadratic polynomial having zeroes x2+(a+1)x+b are 2 and -3 then (a) a=-7, b=-1 (b) a=5, b=-1 (c) a=2, b=-6 (d) a=0,b=-6​

Answers

Answered by ranjeetcarpet
2

Answer:

+(a+1)x+b is the quadratic polynomial.

+(a+1)x+b is the quadratic polynomial.2 and −3 are the zeros of the quadratic polynomial.

+(a+1)x+b is the quadratic polynomial.2 and −3 are the zeros of the quadratic polynomial.Thus, 2+(−3)=1−(a+1)

+(a+1)x+b is the quadratic polynomial.2 and −3 are the zeros of the quadratic polynomial.Thus, 2+(−3)=1−(a+1)=>1(a+1)=1

+(a+1)x+b is the quadratic polynomial.2 and −3 are the zeros of the quadratic polynomial.Thus, 2+(−3)=1−(a+1)=>1(a+1)=1=>a+1=1

+(a+1)x+b is the quadratic polynomial.2 and −3 are the zeros of the quadratic polynomial.Thus, 2+(−3)=1−(a+1)=>1(a+1)=1=>a+1=1=>a=0

+(a+1)x+b is the quadratic polynomial.2 and −3 are the zeros of the quadratic polynomial.Thus, 2+(−3)=1−(a+1)=>1(a+1)=1=>a+1=1=>a=0Also, 2×(−3)=b

+(a+1)x+b is the quadratic polynomial.2 and −3 are the zeros of the quadratic polynomial.Thus, 2+(−3)=1−(a+1)=>1(a+1)=1=>a+1=1=>a=0Also, 2×(−3)=b=>b=−6

Step-by-step explanation:

PLEASE MARK AS BRANILST AND LIKE

Similar questions