Math, asked by daplinregip78afo, 1 year ago

If the zeroes of the quadratic polynomial p(x)= 3x + (2k-1)x-5 are equal in magnitude but opposite in sign then find the value of k

Answers

Answered by abhay022
29
if u found any difficulty please ask in comment box ..I would like to help you for this question and any other question.
Attachments:
Answered by vinod04jangid
1

Answer:

Step-by-step explanation:

Given: We have given that the polynomial is p(x)= 3x^{2}  + (2k-1)x-5.

To find:We have to find the value of k in the given polynomial p(x)= 3x^{2}  + (2k-1)x-5.

Explanation.

Step 1:As we know that the given quadratic polynomial is in the form of ax^{2} +bx+c ,where a = 3,b = (2k-1) and c = -5 respectively.

Step 2:As the zeros of the given quadratic polynomial are equal in magnitude and opposite in sign.So we have,

                   Sum of zeros \alpha +\beta= 0.

Step 3:As we know that the sum of zeros of polynomial can be given by,

⇒                                      \alpha +\beta =\frac{-b}{a} = coefficient of x/coefficient of x^{2}

⇒                                      \alpha +\beta = 0

⇒                                           \frac{-b}{a}= 0      

⇒So,                             -\frac{(2k-1)}{3} = 0  

⇒                               -(2k-1) = 0 × 3  

⇒                                  -2k+1= 0

⇒                                        -2k= -1

⇒                                             k=\frac{-1}{-2}

⇒                                              k= \frac{1}{2}

∴ The value of k in the given quadratic polynomial  p(x)= 3x^{2}  + (2k-1)x-5 is \frac{1}{2}.

#SPJ2

If both zeros of a quadratic polynomial p(x) = (k +2)x^2 - (k - 2)x - 5 are equal in magnitude but opposite in sign then find the value of k

https://brainly.in/question/11416873

if one of the zeros of the quadratic polynomial f(x) = 4 x² - 8kx-9 is equal in magnitude but opposite in sign of the other, then find the value of k

https://brainly.in/question/2366489

Similar questions