Math, asked by shnayasaini, 3 months ago


If the zeroes of the quadratic polynomial x? +(a+1)x + b are 2 and – 3, then
(a) a=-7, b= -1
(b) a= 5, b=-1
(c) a=2. b = -6
(d) a=0, b = -6​

Answers

Answered by Brâiñlynêha
43

\mathsf{\underline{\red{Solution:- }}}

we have

\sf\ \alpha= 2\ \ \ and\ \ \beta= -3

we have to find the value of a and b

As we know that :-

\sf\ \alpha+\beta=\dfrac{-b}{a}\\ \\ \\ \sf\ \ \alpha\beta= \dfrac{c}{a}

In the given polynomial

\sf\  x^2+(a+1)x+b=0\\ \\ \\ \sf\ \ a= 1\ \ \ ;\ b= \ (a+1)\ \ ;\ \ c=b

Now ,

\sf\alpha+\beta=\dfrac{-b}{a}\\ \\ \\ :\implies\sf\ -3+2=\dfrac{-(a+1)}{1}\\ \\ \\ :\implies\sf\ \cancel-1= \cancel-(a+1)\\ \\ \\ :\implies\sf\ 1-1=a\\ \\ \\ :\implies\underline{\boxed{\red{\sf\ a=0}}}

Again for b

\sf\ \ \alpha\beta=\dfrac{c}{a}\\ \\ \\ :\implies\sf\ 3\times -2= \dfrac{b}{1}\\ \\ \\ :\implies\underline{\boxed{\purple{\sf\ b= -6}}}

\underline{\sf{\maltese\ Option (d)\ is\ the\ correct\ \ }}

Answered by ZAYNN
31

Answer:

⠀⠀⠀⌬ Polynomial = x² + (a + 1)x + b

⠀⠀⠀⌬ Zeroes = 2 and - 3

⠀⠀⠀⌬ A = 1 , B = (a + 1) , C = b

\underline{\bigstar\:\textsf{According to the given Question :}}

Sum of Zeroes

:\implies\sf \alpha+\beta=\dfrac{-B}{A}\\ \\ \\ :\implies\sf\ -3+2=\dfrac{-(a+1)}{1}\\ \\ \\ :\implies\sf\ -1= -(a+1)\\\\\\:\implies\sf 1 = a + 1\\ \\ \\ :\implies\sf\ 1-1=a\\ \\ \\ :\implies\sf\ a=0

Product of Zeroes

:\implies\sf \ \alpha\beta=\dfrac{C}{A}\\ \\ \\ :\implies\sf\ 3\times -2= \dfrac{b}{1}\\ \\ \\ :\implies\sf\ b= - \:6

\therefore\:\underline{\textsf{Hence, required answer is d) \textbf{a = 0 and b = - 6}}}.

Similar questions