Math, asked by joelpanvalkar, 10 months ago

If the zeroes of the quadratic polynomial x2 + (a + 1) x + b are 1 and -3, then
A. a=-7 b=-1
B. a=1 b=-3
C. a=2 b=-6
D. a=0 b= -6​

Answers

Answered by kmreddy0982
1

Answer:

option b is correct

Step-by-step explanation:

a+1=-(1-3)

a=1

b=1×-3

b=-3

if u satisfied with my answer

plz mark my answer as a brainliest

Answered by Cynefin
4

Question:

If the zeroes of the quadratic polynomial x2 + (a + 1) x + b are 1 and -3, then

A. a=-7 b=-1

B. a=1 b=-3✔✔

C. a=2 b=-6

D. a=0 b= -6

Answer:

 \large{ \mathrm{if \:  \alpha  \: and \:  \beta  \: are \: the \: zeroes}} \\  \\  \large{ \mathrm{ \star{then \: quadratic \: polynomial.... =  > }}} \\  \large{ \mathrm{ \boxed{ {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta }}} \\  \\  \large{ \mathrm{let \:  \:  \alpha  = 1 \: and \:  \beta  =  - 3}} \\  \\  \large{ \mathrm{ \to \: p(x) =  {x}^{2}  - (1 + ( - 3))x + (1)( - 3)}} \\  \large{ \mathrm{ \to \: p(x)  = {x}^{2}  + 2x - 3}} \\  \\  \large{ \mathrm{we \: have \: p(x) =  {x}^{2}  + (a + 1)x + b = 0}} \\  \large{ \star{ \mathrm{ \bold{by \: comparing....}}}} \\   \\  \large{ \mathrm{ \to \: a + 1 = 2}} \\  \large{ \mathrm{\implies{ \boxed{\: a = 1}}}} \\  \\  \large{ \mathrm{\implies{ \boxed{  \: b =  - 3}}}}

 \huge{ \boxed{ \bold{ \red{a = 1 \: and \: b =  - 3}}}}

Option B...

Similar questions