If the zeroes of the quadratic polynomial x2 + (a + 1)x + b are 2 and –3, then
(A) a = –7, b = –1
(B) a = 5, b = –1
(C) a = 2, b = – 6
(D) a = 0, b = – 6
Answers
Answered by
4
Answer:
a=0,b=-6
Step-by-step explanation:
x=2
Hence, x²+(a+1)x+b=0
=>(2)²+(a+1)2+b=0
=> 4+2a+2+b=0
=> 6+2a+b =0
=> 2a+b =-6 ------------equation (1)
x=-3
Hence,x²+(a+1)x+b=0
=>(-3)²+[-3(a+1)]+b=0
=> 9+[-3a+(-3)]+b=0
=> 9-3a-3+b=0
=> 6-3a+b=0
=> -3a+b=-6 ---------------equation (2)
Now ,subtract equation (2) from (1).
2a+b-(-3a+b)=-6-(-6)
2a+b+3a-b=-6+6
5a=0
a=0
Then,from equation (1) we get:-
2a+b=-6
b=-6-2a -------------------equation (3)
Now substituting the value of a in equation (3) we get:-
b=-6-2×0
b=-6
Hence ,a=0 and b=-6
Similar questions