Math, asked by whitehatsachin, 5 months ago

If the zeroes of the quadratic polynomial x2 + (a+1) x + b are -2 and 3 then find the value of a and b.

Answers

Answered by TulasiSreemoukthika
2

Step-by-step explanation:

given \\ zeroes \: of \: quadratic \: polynmial \:  {x}^{2} +( a + 1) x + b \: are \:  - 2 \: and \: 3 \\ let \\ p(x) =  {x}^{2} + (a + 1)x + b \\ p( - 2) = 0  \\  { (- 2)}^{2}  + (a + 1)( - 2) + b = 0 \\ 4  - 2a - 2 + b = 0 \\ 2 - 2a  + b = 0 \\ 2a - b =2 =  > (1) \\ p(3) = 0 \\  =  >  {3}^{2}  + (a + 1)3 + b = 0 \\  =  > 9 + 3a + 3 + b = 0 \\  =  > 3a + b =  - 12 =  > (2) \\ (1) + (2) \\ 2a  - b + 3a + b = 2 + ( - 12) \\ 5a =  - 10 \\ a =  \frac{ - 10}{5} \\ a =  - 2 \\ sub \: a = - 2 \:  in \: (1) \\ 2( - 2) - b = 2 \\  - 4 - b = 2 \\ b =  - 4 - 2 \\ b =  - 6 \\ therefore \\ a =  - 2 \\ b =  - 6

Similar questions