if the zeros of polynomial x^3- 2x^2+x+1 are (a-b), a, (a+b). Then find the values of a and b.
Answers
Answered by
1
In a cubic equation ax³ + bx² + cx + d,
Sum of roots = -b/a
Product of roots = -d/a
Sum of roots = (a+b + a + a-b) = 3a = -(-2)
∴ a = 2/3
(a - b)(a)(a + b) = -1
(2/3)(4/9 - b²) = -1 ------ { using (a+b)(a-b) = a² - b² }
b² = 4/9 + 3/2 = 35/18
∴ b = √(35/18)
Answered by
1
Answer:
Your ANS...
Step-by-step explanation:
In a cubic equation ax³ + bx² + cx + d,
Sum of roots = -b/a
Product of roots = -d/a
Sum of roots = (a+b + a + a-b) = 3a = -(-2)
∴ a = 2/3
(a - b)(a)(a + b) = -1
(2/3)(4/9 - b²) = -1 ------ { using (a+b)(a-b) = a² - b² }
b² = 4/9 + 3/2 = 35/18
∴ b = √(35/18)
Similar questions