If the zeros of the polynomial = 3 + 3 2 + 3 + are in AP then prove that 2 3 − 3 + 2 = 0.
Answers
Answered by
49
Let the zeros of the given polynomial be p,q,r. As the roots are in A.P., then it can be assumed as p−k,p,p+k, where k is the common difference.
p−k+p+p+k=−a3b
p=−ab
And, (p−k)(p)(p+k)=−ad
p(p2−k2)=−ad
−ab(p2−k2)=−ad
p2−k2=bd
And, p(p−k)+p(p+k)+(p−k)(p+k)=a3c
2p2+(p2−k2)=a3c
a22b2+bd=a3c
a2b2b3+a2d=a3c
2b3−3abc+a2d=0.
______________________________
Answered by
68
Let the zeros of the given polynomial be p,q,r. As the roots are in A.P., then it can be assumed as p−k,p,p+k, where k is the common difference.
⇒ p−k+p+p+k=−a3b
⇒ p=−ab
⇒ And, (p−k)(p)(p+k)=−ad
⇒ p(p2−k2)=−ad
⇒ −ab(p2−k2)=−ad
⇒ p2−k2=bd
⇒ And, p(p−k)+p(p+k)+(p−k)(p+k)=a3c
⇒ 2p2+(p2−k2)=a3c
⇒ a22b2+bd=a3c
⇒ a2b2b3+a2d=a3c
⇒ 2b3−3abc+a2d=0.
Similar questions
Social Sciences,
30 days ago
Math,
30 days ago
History,
30 days ago
Chemistry,
2 months ago
Social Sciences,
2 months ago
Math,
9 months ago
Physics,
9 months ago