Math, asked by ojaswipanpaliya, 3 months ago

If the zeros of the polynomial x^3 - 3x^2 + x + 1 are (a - b), a, (a + b), find the sum of all values of b
(A) 1
(B) 0
(D) None of these
(C) 3​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let we assume that

\rm :\longmapsto\:f(x) =  {x}^{3} -  {3x}^{2} + x + 1

Now,

Given that

\rm :\longmapsto\:a - b, \: a, \: a + b \: are \: zeroes \: of \: f(x)

We know, that

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

\rm :\longmapsto\:a - b + a + a + b =  -  \: \dfrac{( - 3)}{1}

\rm :\longmapsto\:3a = 3

\bf\implies \:a = 1 -  -  - (1)

Also,

We know that,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{3}}}}

\rm :\longmapsto\:(a - b) \times a \times (a + b) =  -  \: \dfrac{1}{1}

\rm :\longmapsto\:a( {a}^{2} -  {b}^{2}) =  - 1

\rm :\longmapsto\:1 \times ( {1}^{2} -  {b}^{2}) =  - 1

\rm :\longmapsto\:1-  {b}^{2} =  - 1

\rm :\longmapsto\:-  {b}^{2} =  - 1   - 1

\rm :\longmapsto\:-  {b}^{2} =  - 2

\rm :\longmapsto\: {b}^{2} = 2

\bf\implies \:b \:  =  \:  \pm \:  \sqrt{2}

So,

\rm :\longmapsto\:Sum \: of \: values \: of \: b \:  =  \sqrt{2}  -  \sqrt{2}  = 0

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \: Option  \: (B) \: is \: correct}}}

Additional Information :-

1. Quadratic polynomial

\rm :\longmapsto\: \alpha,\beta \: are \: zeroes \: of \:  {ax}^{2} +  bx + c, \:  \: then

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

and

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

2. Useful Identities

\green{ \boxed{ \bf \:  { \alpha }^{2} +  { \beta }^{2} =  {( \alpha +  \beta )}^{2} - 2 \alpha  \beta }}

\green{ \boxed{ \bf \:  { \alpha }^{3} +  { \beta }^{3} =  {( \alpha +  \beta )}^{3} - 3 \alpha  \beta( \alpha  + \beta ) }}

\green{ \boxed{ \bf \:  {( \alpha  -  \beta )}^{2} =  {( \alpha +   \beta) }^{2} - 4 \alpha  \beta }}


pulakmath007: Excellent
Similar questions