If the zeros of the polynomial x³-3x²+x+1 are a-b,a,a+b . Find a and b !
Answers
Answer:
Step-by-step explanation:
Given polynomial :-
f(x) = x³ - 3x² + x + 1
Solution :-
Here a = 1 , b = -3 , c = 1 , d = 1 .
Let α = (a - b) , β = a and γ = (a + b)
We know that,
⇒ α + β + γ = -b/a .
⇒ (a - b) + a + (a - b) = -(-3)/1 .
⇒ 3a = 3 .
⇒ a = 3/3 .
⇒ a = 1
Also we know that,
⇒ αβ + βγ + γα = c/a .
⇒ a( - b) + a(a + b) + (a + b)(a - b) = 1/1 .
⇒ a² - ab + a² + ab + a² - b² = 1 .
⇒ 3a² - b² = 1 .
Putting a = 1, we get
⇒ (3 × 1²) - b² = 1 .
⇒ 3 - b² = 1 .
⇒ b² = 3 - 1 .
⇒ b² = 2 .
⇒ b = ±√2 .
Hence, a = 1 and b = ±√2.
AnswEr :
For any cubic polynomial in the form of :
⋆ p( x ) = px³ + qx² + rx + s
with α, β and γ as zeros of polynomial.
- α + β + γ = - q /p
- αβ + βγ + γα = r /p
- αβγ = - s /p
_________________________________
• Let's Head to the Question Now :
⋆ p( x ) = x³ - 3x² + x + 1
where, (a - b), a, (a + b) are zeros.
And the Terms are :
- p = 1
- q = - 3
- r = 1
- s = 1
• By Addition of zeros we get :
⇒ α + β + γ = - q /p
⇒ (a - b) + a + (a + b) = - (- 3) /1
⇒ 3a = 3
⇒ a = 3 /3
⇒ a = 1
• By Multiplication of zeros we get :
⇒ αβγ = - s /p
⇒ (a - b) × a × (a + b) = - 1 /1
- plugging the values of a
⇒ (1 - b)(1 + b) × 1 = - 1
- (a - b)(a + b) = (a² - b²)
⇒ ( 1 )² - ( b )² = - 1
⇒ 1 - b² = - 1
⇒ 1 + 1 = b²
⇒ b² = 2
⇒ b = ±√2
∴ Value of a is 1 and, value of b is ±√2.