If the zeros of the polynomial x3 - ax2 + bx - c are A.P, then show that 2a3 - 9ab + 27c= 0.
Also, what is A.P?
Answers
Answer:
Step-by-step explanation:
f(x) = x³ - ax² + bx - c
Let say zeroes are
n-d , n , n + d
Sum of zeroes = 3n
Sum of Zeroes = -(-a)/1 = a
3n = a
n = a/3
n is the zero
f(n) = 0
n³ - an² + bn - c = 0
(a/3)³ - a(a/3)² +ba/3 - c = 0
multiplying by 27 both sides
=> a³ - 3a³ + 9ab - 27c = 0
=> -2a³ + 9ab - 27c = 0
Changing sign
=> 2a³ - 9ab + 27c = 0
QED
(a/3 - d)(a/3) + (a/3)(a/3+d) + (a/3-d)(a/3 +d) = b
=> (a/3)(a/3 + a/3) + (a/3)² - d² = b
=> 3(a/3)² - d² = b
=> d² = a²/3 - b
=> d = ±√(a²/3 - b)
AP is
a/3 +√(a²/3 - b) , a/3 , a/3 -√(a²/3 - b)
a/3 -√(a²/3 - b) , a/3 , a/3 + √(a²/3 - b)
f(x) = x³ - ax² + bx - c
Let the zeroes be
n - d, n, n + d
Sum of zeroes = 3n
Sum of Zeroes = - (-a)/1 = a
3n = a
n = a/3
n is the zero
f(n) = 0
n³ - an² + bn - c = 0
(a/3)³ - a(a/3)² +ba/3 - c = 0
Multiplying by 27 both sides
=> a³ - 3a³ + 9ab - 27c = 0
=> -2a³ + 9ab - 27c = 0
Changing sign
=> 2a³ - 9ab + 27c = 0
(a/3 - d)(a/3) + (a/3)(a/3+d) + (a/3-d)(a/3 +d) = b
=> (a/3)(a/3 + a/3) + (a/3)² - d² = b
=> 3(a/3)² - d² = b
=> d² = a²/3 - b
=> d = ±√(a²/3 - b)
Therefore, AP is
a/3 +√(a²/3 - b) , a/3 , a/3 -√(a²/3 - b)
a/3 -√(a²/3 - b) , a/3 , a/3 + √(a²/3 - b)
______________________________________________________________