Math, asked by Anonymous, 1 year ago

if the zeros of the polynomials x³ - 3x² +x+1 are a-b,a,a+b, find a and b

Answers

Answered by dhathri123
27
hi friend ,

given the zeros of the polynomials x³ - 3x² +x+1 are a-b,a,a+b

the sum of the zeros are a-b+a+a+b=3a=-x²-coeffiecient /x³co efficient =3

→a=1

→now the zeros are 1-b,1,1+b

product of zeros = -constant term /x³ coefficient

→1-b²=-1

→b²=2

b=±√2

I hope this will help u ;)

mysticd: it is wrong. plz check.
dhathri123: ya i know can u give me editing option,someone reported it plz
dhathri123: ya plz give
dhathri123: thank u
dhathri123: thank u ;)
Answered by poojan
15
By trail and error method, let x=1

f(1) = 1-3+1+1 = 0
So, 1 is one of the zero of given polynomial

So x-1 is one of the factor of given polynomial.
So dividing the given polynomial with x-1, we will get another factor

                               x-1) x³-3x²+x+1 (x²-2x-1
                                      x³- x²
                                    (-)  (+)
                                    __________
                                     0 - 2x²+x+1
                                        - 2x²+2x
                                         (+)   (-)
                                    __________
                                                -x+1
                                                -x+1
                                               (+) (-)
                                    __________
                                                   0
                                   ___________

So, x²-2x-1 is also a factor of given polynomial
Solving the factor x²-2x-1 =0.  
Here, a=1, b=-2, c=-1

Roots of the equation be solved by the formula : (-b+-√b²-4ac) / 2a
                                              = 2+-√4+4/2
                                              = (2+-2√2)/2
                                              = 2(1+-√2)/2
 Therefore, 1+√2 and 1-√2 are the other zeroes of given polynomial.

                           
therefore the zeroes are 1, 1+√2, 1-√2

let a=1, a-b=1-√2, a+b=1+√2

placing the value of a in a+b
a+b = 1+√2
1+b = 1+√2
b=1+√2-1
b=√2

Hence, a=1, b=√2


mysticd: Factors of x^1 - x -1 =0 are wrong
mysticd: Plz , check
mysticd: :)
mysticd: Very good
Similar questions