Math, asked by rishiraj20, 2 months ago



if
The zeros of the Quadractic polynomial x^2 +(a+1)x
+b are 2 and 3 then find a and b​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that,

\rm :\longmapsto\:f(x) =  {x}^{2} + (a + 1)x + b

Given that

\rm :\longmapsto\:2 \: and \: 3 \: are \: zeroes \: of \: f(x)

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\:2 + 3 =  -  \: \dfrac{(a + 1)}{1}

\rm :\longmapsto\:5 =  - a - 1

\bf\implies \:a =  -  \: 6

Also,

We know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\:2 \times 3 = \dfrac{b}{1}

\bf\implies \:b = 6

Additional Information :-

Cubical polynomial

\rm :\longmapsto\: \alpha,  \beta \: and \:  \gamma \: are \: zeroes \: of \:  {ax}^{2} + bx + c, \:  \: then

\green{ \boxed{ \bf \:  \alpha  +  \beta +   \gamma  =  -  \frac{b}{a}}}

\green{ \boxed{ \bf \:  \alpha \beta   +  \beta  \gamma +   \gamma \alpha   =  \frac{c}{a}}}

\green{ \boxed{ \bf \:  \alpha \beta \gamma  = \frac{d}{a}}}

2. Useful Identities

\green{ \boxed{ \bf \:  { \alpha }^{2} +  { \beta }^{2} =  {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta }}

\green{ \boxed{ \bf \:  { \alpha }^{3} +  { \beta }^{3} =  {( \alpha  +  \beta )}^{3} - 3 \alpha  \beta( \alpha  +  \beta ) }}

\green{ \boxed{ \bf \:  {( \alpha - \beta )}^{2} =  {( \alpha + \beta) }^{2} - 4 \alpha  \beta }}

Similar questions