Math, asked by karunack256, 19 days ago

if the zeros of your x⁴+x³-5x²-3x+6 are root 3 and - root 3 then find the other two zeros​

Answers

Answered by vikkiain
0

 - 2,1

Step-by-step explanation:

Given, \\  {x}^{4}  +  {x}^{3}  - 5 {x}^{2}  - 3x + 6 \\ x =  \sqrt{3}  \:  \: and \:  \:  -  \sqrt{3}  \\ then \:  \:  \: (x -  \sqrt{3} )(x +  \sqrt{3} ) =  {x}^{2}  - 3 \\ now \:  \\  \frac{{x}^{4}  +  {x}^{3}  - 5 {x}^{2}  - 3x + 6}{ {x}^{2}  - 3}  =  {x}^{2}  + x - 2 \\ {x}^{2}  + x - 2 = 0 \\  {x}^{2}  + 2x - x - 2 = 0 \\ x(x + 2) - 1(x + 2) = 0 \\ (x + 2)(x - 1) = 0 \\ x =  - 2 \:  \: and \:  \: x = 1 \\  all \: \:  roots \: \:  are \:  \:  \sqrt{3}, \:  -  \sqrt{3} , \:  - 2 \:  \: and \:  \: 1

Similar questions