If
then find value of
xy=6 and x+y=10
x^2+y^2
Answers
Answered by
48
x² + y² = 88 .
Given :-
- xy = 6
- x + y = 10
To Find :-
- x² + y² = ?
Solution :-
As we know that,
(a + b)² = a² + 2ab + b²
A/Q, (x + y)² = x² + 2xy + y²
=> (10)² = x² + y² + 2(6)
=> 100 = x² + y² + 12
=> x² + y² = 100 - 12
=> x² + y² = 88
Thus, the value of x² + y² is 88.
Answered by
6
Given :-
- xy = 6
- x + y = 10
To find :-
- x² + y²
Solution :-
As we know that
→ (a + b)² = a² + b² + 2ab {Apply identity}
→ (x + y)² = x² + y² + 2xy
→ (10)² = x² + y² + 2 × 6
→ 100 = x² + y² + 12
→ x² + y² = 100 - 12
→ x² + y² = 88
Hence,
- x² + y² = 88
Some Identities
- (a - b)² = a² + b² - 2ab
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ - b³ = (a - b)(a² + ab + b²)
- a³ + b³ = (a + b)(a² - ab + b²)
Similar questions
Business Studies,
4 months ago
Science,
4 months ago
Computer Science,
10 months ago
Biology,
10 months ago
Physics,
1 year ago
Geography,
1 year ago