Math, asked by 5SoS, 16 days ago

If there are ten values each equal to 20, then standard deviation of these values is

Answers

Answered by tejmshah1301
0

Answer:

pls mark as brainest

Step-by-step explanation:

answer is

Standard deviation of these values is 0 if there are ten values each equal to 10

Given:

There are ten values each equal to 10

To Find:

Standard deviation

Solution:

\overline{x} =\dfrac{\sum x_i}{N}

x

=

N

∑x

i

\sigma=\sqrt{\dfrac{\sum(x_i-\overline{x})^2}{N}

σ = SD (Standard deviation) , \overline{x}=\text{mean}

x

=mean

If all values are same then Standard deviation is 0

Hence Standard deviation is 0

Step 1:

Calculate \overline{x}=\text{mean}

x

=mean

\overline{x} =\dfrac{10+10+10+10+10+10+10+10+10+10}{10} = 10

x

=

10

10+10+10+10+10+10+10+10+10+10

=10

Step 2:

Calculate \sum(x_i-\overline{x})^2∑(x

i

x

)

2

x_ix

i

x_i-\overline{x}x

i

x

(x_i-\overline{x})^2(x

i

x

)

2

10 10 - 10 = 0 0

10 10 - 10 = 0 0

10 10 - 10 = 0 0

10 10 - 10 = 0 0

10 10 - 10 = 0 0

10 10 - 10 = 0 0

10 10 - 10 = 0 0

10 10 - 10 = 0 0

10 10 - 10 = 0 0

10 10 - 10 = 0 0

Sum 0

Step 3:

Calculate SD

\sigma=\sqrt{\dfrac{\sum(x_i-\overline{x})^2}{N}

\sigma=\sqrt{\dfrac{0}{10}

σ = 0

Hence, Standard deviation of these values is 0

Similar questions