Math, asked by omegakharibam, 19 days ago

if there is a cold drink can whose height is7cm and the radius of its round top is 3cm then what will be the lateral surface area of that cylinder(pr=3.14)​

Answers

Answered by Anonymous
27

 \large \; {\dag{\underline{\underline{\color{darkblue}{\pmb{\sf{ \; Given \; :- }}}}}}}

  • Height of can = 7 cm
  • Radius of top = 3 cm

 \\ \rule{200pt}{3pt}

 \large \; {\dag{\underline{\underline{\orange{\pmb{\sf{ \; To \; Find \; :- }}}}}}}

  • Lateral Surface Area = ?

 \\ \rule{200pt}{3pt}

 \large \; {\dag{\underline{\underline{\green{\pmb{\sf{ \; Solution \; :- }}}}}}}

 \maltese \; {\underline{\pmb{\frak{ Formula \; Used \; :- }}}}

  •  {\underline{\boxed{\purple{\sf{ Lateral \; Surface \; Area = 2 \pi rh }}}}}

Where :

  •  {\sf{ \pi = 3.14 }}
  • ➬ r = Radius
  • ➬ h = Height

 \\ \qquad{\rule{150pt}{1pt}}

 \maltese \; {\underline{\pmb{\frak{ Calculating \; the \; LSA \; :- }}}}

 \begin{gathered} \dashrightarrow \; \; \sf { LSA{\small_{(Can)}} = 2 \pi rh } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { LSA{\small_{(Can)}} = 2 \times 3.14 \times 3 \times 7 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { LSA{\small_{(Can)}} = 2 \times \dfrac{314}{100} \times 3 \times 7 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { LSA{\small_{(Can)}} = \cancel2 \times \dfrac{314}{\cancel{100}} \times 3 \times 7 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { LSA{\small_{(Can)}} = \dfrac{314}{50} \times 3 \times 7 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { LSA{\small_{(Can)}} = \dfrac{314}{50} \times 21 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { LSA{\small_{(Can)}} = \dfrac{6594}{50} } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { LSA{\small_{(Can)}} = \cancel\dfrac{6594}{50} } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; {\qquad{\red{\sf {  Lateral \; Surface \; Area \; of \; Can = 131.88 \; {m}^{2} }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

 \maltese \; {\underline{\pmb{\frak{ Therefore \; :- }}}}

❛❛ Lateral Surface Area of the can is 131.88 m² . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by bibhutikr673
6

Answer:

Make reference to the attachment.

hope it helps you

Attachments:
Similar questions