If there will be no terrestrial radiation what will happen?
Answers
Answer:
below is correct
Explanation:
Solution: Begin by considering an atmosphere composed of a single isothermal layer. Because the layer is opaque in the longwave part of the spectrum, the equivalent blackbody temperature of the planet corresponds to the temperature of the atmosphere. Hence, the atmosphere must emit F units radiation to space as a blackbody to balance the F units of incoming solar radiation transmitted downward through the top of the atmosphere. Because the layer is isothermal, it also emits F units of radiation in the downward direction. Hence, the downward radiation at the surface of the planet is F units of incident solar radiation plus F units of longwave radiation emitted from the atmosphere, a total of 2F units, which must be balanced by an upward emission of 2F units of longwave radiation from the surface. Hence, from the Stefan–Boltzmann law (4.12) the temperature of the surface of the planet is 303 K, i.e., 48 K higher than it would be in the absence of an atmosphere, and the temperature of the atmosphere is the same as the temperature of the surface of the planet calculated in Exercise 4.6.
If a second isothermal, opaque layer is added, as illustrated in Fig. 4.9, the flux density of downward radiation incident upon the lower layer will be 2F (F units of solar radiation plus F units of longwave radiation emitted by the upper layer). To balance the incident radiation, the lower layer must emit 2F units of longwave radiation. Because the layer is isothermal, it also emits 2F units of radiation in the downward radiation. Hence, the downward radiation at the surface of the planet is F units of incident solar radiation plus 2F units of longwave radiation emitted from the atmosphere, a total of 3F units, which must be balanced by an upward emission of 3F units of longwave radiation from the surface.
Sign in to download full-size image
Fig. 4.9. Radiation balance for a planetary atmosphere that is transparent to solar radiation and consists of two isothermal layers that are opaque to planetary radiation. Thin downward arrows represent the flux of F units of shortwave solar radiation transmitted downward through the atmosphere. Thicker arrows represent the emission of longwave radiation from the surface of the planet and from each of the layers. For radiative equilibrium the net radiation passing through the Earth's surface and the top of each of the layers must be equal to zero.