Math, asked by ssk150268, 7 hours ago

If theta = 30°, show that cos6^theta + sin^6theta = 1-3 sin2^theta cos2^theta​

Answers

Answered by pk030833
2

Answer:

hope this image helps you

Attachments:
Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\theta  = 30 \degree \:

Consider

\rm :\longmapsto\: {cos}^{6}\theta  +  {sin}^{6}\theta

On substituting the value, we get

\rm \:  =  \:  {cos}^{6}30\degree +  {sin}^{6}30\degree

\rm \:  =  \:  {(cos30\degree)}^{6} +  {(sin30\degree)}^{6}

\rm \:  =  \:  {\bigg[\dfrac{ \sqrt{3} }{2} \bigg]}^{6} +  {\bigg[\dfrac{1}{2} \bigg]}^{6}

\rm \:  =  \: \dfrac{27}{64}  + \dfrac{1}{64}

\rm \:  =  \: \dfrac{27 + 1}{64}

\rm \:  =  \: \dfrac{28}{64}

\rm \:  =  \: \dfrac{7}{16}

Now, Consider

\rm :\longmapsto\:1 - 3 {sin}^{2}\theta  {cos}^{2}\theta

On substituting the value, we get

\rm \:  =  \: 1 - 3 {sin}^{2}30\degree {cos}^{2}30\degree

\rm \:  =  \: 1 - 3 \times  {\bigg[\dfrac{ \sqrt{3} }{2} \bigg]}^{2}  \times  {\bigg[\dfrac{1}{2} \bigg]}^{2}

\rm \:  =  \: 1 - 3 \times \dfrac{3}{4}  \times \dfrac{1}{4}

\rm \:  =  \: 1 -  \dfrac{9}{16}

\rm \:  =  \: \dfrac{16 - 9}{16}

\rm \:  =  \: \dfrac{7}{16}

Hence, We concluded that

\rm\implies \:\boxed{\tt{  {sin}^{6}\theta  +  {cos}^{6}\theta  = 1 - 3 {sin}^{2}\theta  {cos}^{2}\theta }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions