if theta =30° verify the following :- (a) cos 3 theta° = 4 cos ^3 theta - 3 cos theta (B) sin 3 theta° = 3 sin theta - 4 sin ^3 theta PROPER ANSWER=BRAINLIEST
Answers
Solution :-
I m assume theta = x = 30°
(a) cos3x = 4cos³x - 3cosx
Putting x = 30° both sides we get,
→ cos(3*30°) = 4cos³30° - 3cosx
→ cos90° = 4cos³30° - 3cosx
values :-
- cos90° = 0
- cos30° = (√3/2)
Putting values both sides Now,
→ 0 = 4(√3/2)³ - 3(√3/2)
→ 0 = 4(3√3/8) - (3√3/2)
→ 0 = (12√3/8) - (3√3/2)
→ 0 = (3√3/2) - (3√3/2)
→ 0 = 0 (Verified) .
_________________
(b) sin3x = 3sinx - 4sin³x
Putting x = 30° both sides we get,
→ sin(3*30°) = 3sinx - 4sin³30°
→ sin90° = 3sin30° - 4sin³30°
values :-
- sin90° = 1
- sin30° = (1/2)
Putting values both sides Now,
→ 1 = 3(1/2) - 4(1/2)³
→ 1 = (3/2) - 4(1/8)
→ 1 = (3/2) - (1/2)
→ 1 = (3 - 1)/2
→ 1 = (2/2)
→ 1 = 1 (Verified.)
_________________________
Solution :
We have Ф = 30°
A/q
(a) : cos 3 Ф° = 4 cos³ Ф - 3 cos Ф
Taking L.H.S :
Taking R.H.S :
∴ L.H.S = R.H.S
(b) : sin 3 Ф° = 3 sin Ф - 4 sin³ Ф
Taking L.H.S :
Taking R.H.S :
∴ L.H.S = R.H.S