If theta and (2theta+ 45°) are acute angles such that sin theta = cos(2theta+ 45°), then root 2sin 3theta – 2tan 3theta is equal to
(a) 0
(b) -1
(0) 1
(d) 2
Answers
Answered by
0
(b) -1
Explanation:
Sin θ = Cos (2θ + 45°)
= Sin (90° - (2θ + 45°))
= Sin (45° - 2θ)
So θ = 45° - 2θ
3θ = 45°
Therefore θ = 15°
Now ✓2 sin 3θ – 2tan 3θ = ✓2 sin 3(15°) – 2tan 3(15°)
= ✓2 sin 45° – 2tan 45°
= ✓2 * 1/✓2 - 2 * 1
= 1 - 2
= -1
Option B is the answer.
Similar questions