Math, asked by Linosthicisthefact, 1 month ago

if theta and phi lie in the first quadrant such that sin theta=8/17 and cos phi=12/13. Find the value of
1) sin(theta-phi)​
2) cos(theta+phi)
3)tan(theta-phi)

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:0 < \theta  < \dfrac{\pi}{2}

\rm :\longmapsto\:0 < \phi  < \dfrac{\pi}{2}

\red{\rm :\longmapsto\:sin\theta  = \dfrac{8}{17}}

\red{\rm :\longmapsto\:cos\phi   = \dfrac{12}{13}}

Now,

As it is provided that

\rm :\longmapsto\:0 < \theta, \: \phi    < \dfrac{\pi}{2}

So,

\rm :\longmapsto\:sin\theta ,cos\theta ,tan\theta ,cos\phi  ,sin\phi  ,tan\phi   > 0

Now,

We know that

\red{\rm :\longmapsto\: {sin}^{2}\theta  +  {cos}^{2}\theta  = 1}

\rm :\longmapsto\:\dfrac{64}{289}  +  {cos}^{2} \theta  = 1

\rm :\longmapsto\: {cos}^{2}\theta  =  1 - \dfrac{64}{289}

\rm :\longmapsto\: {cos}^{2}\theta  =   \dfrac{289 - 64}{289}

\rm :\longmapsto\: {cos}^{2}\theta  =   \dfrac{225}{289}

\rm :\longmapsto\: {cos}^{2}\theta  =   \dfrac{ {15}^{2} }{ {17}^{2} }

\bf\implies \:cos\theta  = \dfrac{15}{17}

Also, we know that,

\rm :\longmapsto\:tan\theta  = \dfrac{sin\theta }{cos\theta }  = \dfrac{8}{17}  \div \dfrac{15}{17}  = \dfrac{8}{15}

Also,

\rm :\longmapsto\: {sin}^{2}\phi   +  {cos}^{2}\phi   = 1

\rm :\longmapsto\: {sin}^{2}\phi   + \dfrac{144}{169}  = 1

\rm :\longmapsto\: {sin}^{2}\phi = 1 -  \dfrac{144}{169}

\rm :\longmapsto\: {sin}^{2}\phi = \dfrac{169 - 144}{169}

\rm :\longmapsto\: {sin}^{2}\phi = \dfrac{25}{169}

\rm :\longmapsto\: {sin}^{2}\phi = \dfrac{ {5}^{2} }{ {13}^{2} }

\bf\implies \:sin\phi   = \dfrac{5}{13}

Also,

\rm :\longmapsto\:tan\phi   = \dfrac{sin\phi  }{cos\phi  }  = \dfrac{5}{13}  \div \dfrac{12}{13}  = \dfrac{5}{12}

Consider 1.

\red{\rm :\longmapsto\:sin(\theta  - \phi  )}

\rm \:  =  \:  \: sin\theta cos\phi   - sin\phi  cos\theta

\rm \:  =  \:  \: \dfrac{8}{17}  \times \dfrac{12}{13}  - \dfrac{5}{13}  \times \dfrac{15}{17}

\rm \:  =  \:  \: \dfrac{96}{221}   -  \dfrac{75}{221}

\rm \:  =  \:  \: \dfrac{96 - 75}{221}

\rm \:  =  \:  \: \dfrac{21}{221}

Consider:- 2

\red{\rm :\longmapsto\:cos(\theta   +  \phi  )}

\rm \:  =  \:  \: cos\theta cos\phi   - sin\theta sin\phi

\rm \:  =  \:  \: \dfrac{15}{17}  \times \dfrac{12}{13}  - \dfrac{8}{17}  \times \dfrac{5}{13}

\rm \:  =  \:  \: \dfrac{180}{221}  - \dfrac{40}{221}

\rm \:  =  \:  \: \dfrac{180 - 40}{221}

\rm \:  =  \:  \: \dfrac{140}{221}

Consider :- 3

 \red{\rm :\longmapsto\:tan(\theta  - \phi  )}

\rm \:  =  \:  \: \dfrac{tan\theta  - tan\phi  }{1 + tan\theta  \: tan\phi  }

\rm \:  =  \:  \: \dfrac{\dfrac{8}{15}  - \dfrac{5}{12} }{1 + \dfrac{8}{15}  \times \dfrac{5}{12} }

\rm \:  =  \:  \: \dfrac{96 - 75}{180 + 40}

\rm \:  =  \:  \: \dfrac{21}{220}

Answered by XxItzAdyashaxX
2

Answer:

θ

and ϕ

lie in the first quadrant, such that sinθ=817

and cosϕ=1213

, find the values of cos(θ+ϕ)

.

Similar questions