Math, asked by qwertyuiopasdfghjk10, 1 year ago

If theta is an acute angle and 3sin theta =4cos theta find the value of 4sin ^2-3cos ^2 + 2

Answers

Answered by kanakbahara
38

Answer:

sin theta/cos theta=4/3

tan theta =4/3= p/b

sin theta=p/h

=4/5

cos theta=b/h

=3/5

4*16/25-3*9/25+2=64/25-27/25+2

=37/25+2

=3.48

is the answer right??

Answered by priyarksynergy
4

Given is the relation between sine and cosine for an angle, Find 4sin^2\theta-3cos^2\theta+2

Explanation:

  • In a right angled triangle having perpendicular 'P', base length 'B', and hypotenuse 'H' w.r.t an angle \theta we have, ->tan\theta=\frac{P}{B},\ sin\theta=\frac{P}{H}   \ \ \ \ \ \ \ \ \ ->H=\sqrt{P^2+B^2}    ----(a)
  • Here we have, 3sin\theta=4cos\theta\ \  \ \ ->tan\theta=\frac{3}{4}  
  • Now from (a) we get,
  • P=3,\ \  \ B=4\ \  \ \\\ ->H=\sqrt{3^2+4^2}=5  \\->sin\theta=\frac{3}{5}     ----(b)
  • Now we have to evaluate,
  • 4sin^2\theta-3cos^2\theta+2\\->4sin^2\theta-3(1-sin^2\theta)+2 \  \ \ \ \ \ \ \ \ \ \ \ \  \ \ \ (->sin^2\theta+cos^2\theta=1)\\->7sin^2\theta-1\\->7(\frac{3}{5}) ^2-1 \  \ \ \ \ \ \ \ \ \ \ \ \  \ \ \ \ \  \ \  \ \ \  \ \ \  \ \ \ \ \ \ \ \ \ \ \ (->from\ (b))\\->\frac{63}{25} -1\\\\->\frac{38}{25}= 1.52  
  • Hence, the value of the required expression is \frac{38}{25}\ (=1.52).
Similar questions