Math, asked by kanhaiya8148, 9 months ago

If theta is an acute angle and tan theta=1/√7then find the value of cos es^2theta-sec^2theta/cos es^2theta+sec^2theta.

Answers

Answered by saounksh
0

ANSWER

  • \boxed{ \frac{cosec^2(\theta) - sec^2(\theta)}{cosec^2(\theta) + sec^2(\theta)} = \frac{3}{4}}

GIVEN

  •  tan(\theta) = \frac{1}{\sqrt{7}}, 0 ≤\theta ≤ 90^0.

CALCULATION

Here,

\to \frac{cosec^2(\theta) - sec^2(\theta)}{cosec^2(\theta) + sec^2(\theta)}

\to \frac{\frac{1}{sin^2(\theta)} - \frac{1} {cos^2(\theta)}}{\frac{1}{sin^2(\theta)} + \frac{1} {cos^2(\theta)} }

\to \frac{sin^2(\theta)\left[\frac{1}{sin^2(\theta)} - \frac{1} {cos^2(\theta)}\right]}{sin^2(\theta)\left[\frac{1}{sin^2(\theta)} + \frac{1} {cos^2(\theta)}\right]}

\to \frac{1 - \frac{sin^2(\theta)}{cos^2(\theta)}}{1 + \frac{sin^2(\theta)}{cos^2(\theta)}}

\to \frac{1 - tan^2(\theta)}{1 + tan^2(\theta)}

\to \frac{1 - \left(\frac{1}{\sqrt{7}}\right)^2}{1 + \left(\frac{1}{\sqrt{7}}\right)^2}

\to \frac{1 - \frac{1}{7}}{1 + \frac{1}{7}}

\to \frac{7 - 1}{7 + 1}

\to \frac{6}{8}

\to \frac{3}{4}

Similar questions