Math, asked by devanshmahida007, 11 months ago

if theta is an acute angle and tan theta + cot theta = 2, find the value of tan^12 theta + cot^12 theta ​

Answers

Answered by poojachaudhary2609
1

Answer:

2

Step-by-step explanation:

Answered by mysticd
4

 Given \: \theta\:is \:an \:acute \:angle .

 tan \theta + cot \theta = 2 \: --(1)

 \implies tan \theta+ \frac{1}{tan\theta} =2

 \implies \frac{tan^{2} \theta + 1}{tan\theta } = 2

 \implies tan^{2} \theta + 1 = 2tan\theta

 \implies tan^{2} \theta + 1 -2tan\theta=0

 \implies tan^{2} \theta + 1^{2} - 2tan\theta\times 1=0

 \implies ( tan\theta - 1)^{2} = 0

 \implies tan\theta - 1 = 0

 \implies tan \theta = 1\: ---(2)

 Now, \:Value \: of \:tan^{12} \theta + cot^{12} \theta \\= (tan \theta)^{12} + \frac{1}{(tan\theta)^{12}} \\= 1 + 1 \: [ From \: (2) ] \\= 2

Therefore.,

 \red { Value \:of \:tan^{12} \theta + cot^{12} \theta  }\green { = 2 }

•••♪

Similar questions