Math, asked by Raxle, 12 hours ago

if theta is an acute angle and tan theta +cot theta =2 then find the value of tan^25 theta+cot^25theta+sec^2 theta+ cos^2theta​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:tan\theta  + cot\theta  = 2

We know,

\boxed{ \bf{ \:cotx =  \frac{1}{tanx}}}

So, using this, we get

\rm :\longmapsto\:tan\theta  + \dfrac{1}{tan\theta } = 2

\rm :\longmapsto\: \dfrac{ {tan}^{2}\theta  +  1}{tan\theta } = 2

\rm :\longmapsto\: {tan}^{2}\theta  + 1 = 2tan\theta

\rm :\longmapsto\: {tan}^{2}\theta  + 1  - 2tan\theta  = 0

We know,

\boxed{ \bf{ \: {x}^{2} +  {y}^{2} - 2xy =  {(x - y)}^{2}}}

So, using this, we get

\rm :\longmapsto\: {(tan\theta  - 1)}^{2}  = 0

\rm :\longmapsto\:tan\theta  - 1 = 0

\rm :\longmapsto\:tan\theta = 1

\rm :\longmapsto\:tan\theta = tan45 \degree

\bf\implies \:\boxed{ \bf{ \:\theta  = 45\degree}}

Now, Consider,

\rm :\longmapsto\: {tan}^{25}\theta  +  {cot}^{25}\theta  +  {sec}^{2}\theta  +  {cos}^{2}\theta

On substituting the value, we get

\rm \:=\: {tan}^{25}45\degree  +  {cot}^{25}45\degree  +  {sec}^{2}45\degree  +  {cos}^{2}45\degree

We know,

\boxed{ \bf{ \:tan45\degree = 1}} \:  \: \boxed{ \bf{ \:cot45\degree = 1}} \:  \:  \\  \\ \boxed{ \bf{ \:sec45\degree =  \sqrt{2}}} \:  \: \boxed{ \bf{ \:cos45\degree =  \frac{1}{ \sqrt{2} }}}

So, on substituting these values, we get

\rm \:  =  \:  {1}^{25} +  {1}^{25} +  {( \sqrt{2}) }^{2} +  {\bigg[\dfrac{1}{ \sqrt{2} } \bigg]}^{2}

\rm \:  =  \: 1 + 1 + 2 +  \dfrac{1}{2}

\rm \:  =  \:4 +  \dfrac{1}{2}

\rm \:  =  \: \dfrac{8 + 1}{2}

\rm \:  =  \: \dfrac{9}{2}

Hence,

\rm :\longmapsto\: \boxed{ \bf{ \:{tan}^{25}\theta  +  {cot}^{25}\theta  +  {sec}^{2}\theta  +  {cos}^{2}\theta =  \frac{9}{2}}}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions