Math, asked by yuvrajjain5641, 20 days ago

If theta is an acute angle and tan theta + cot theta equal to 2 then the value of sin cube
theta + cos cube theta is

Answers

Answered by jitendra12iitg
60

Answer:

The answer is \dfrac{1}{\sqrt 2}

Step-by-step explanation:

Given

     \tan\theta+\cot\theta=2

Using \tan\theta\cot\theta=1

    \Rightarrow \tan\theta+\dfrac{1}{\tan\theta}=2\\\Rightarrow \tan^2\theta+1=2\tan\theta\\\Rightarrow \tan^2\theta-2\tan\theta+1=0\\\Rightarrow (\tan\theta-1)^2=0\\\Rightarrow \tan\theta=1\Rightarrow \theta=45^\circ

Therefore,

     \sin^3\theta+\cos^3\theta=(\sin 45^\circ)^3+(\cos 45^\circ)^3

                            =\frac{1}{(\sqrt 2)^3}+\frac{1}{(\sqrt 2)^3}=2(\frac{1}{(\sqrt 2)^3})\\\\=2(\frac{1}{(\sqrt 2)^2})(\frac{1}{\sqrt 2})=2(\frac{1}{2}(\frac{1}{\sqrt 2})=\dfrac{1}{\sqrt 2}

Answered by nt3858938
17

Answer:

follow please if you find this helpful

Attachments:
Similar questions