if theta is an acute angle such that tan theta =2/3,then evaluate 1+tantheta/sin theta+costheta*1-cot theta/sec thta +coec theta
Answers
Answered by
2
Given:
theta is an acute angle such that tan theta =2/3,
To find:
evaluate 1+tantheta/sin theta+costheta*1-cot theta/sec theta +coec theta
Solution:
From given, we have,
tan ∅ = 2/3
We have the expression,
(1 + tan ∅)/(sin ∅ + cos ∅) × (1 - cot ∅)/(sec ∅ + cosec ∅)
we will use the Pythagorean triplets to solve this problem.
tan ∅ = 2/3
⇒ sin ∅ = 2/5
⇒ cosec ∅ = 5/2
⇒ cos ∅ = 3/5
⇒ sec ∅ = 5/3
⇒ cot ∅ = 3/2
now substitute these values in the above equation.
So, we get,
(1 + tan ∅)/(sin ∅ + cos ∅) × (1 - cot ∅)/(sec ∅ + cosec ∅)
= (1 + 2/3)/(2/5 + 3/5) × (1 - 3/2)/(5/3 + 5/2)
upon solving the above equation, we get,
(1 + tan ∅)/(sin ∅ + cos ∅) × (1 - cot ∅)/(sec ∅ + cosec ∅) = - 1/5
Similar questions