if theta is equal to 45 then prove sin 2 theta is equal to 2 cos theta into cos 3 theta
Answers
Answered by
0
Solution :
Here I am using A instead of theta.
A = 45° ( given )
LHS = sin2A
= sin( 2× 45° )
= sin90°
= 0 ----( 1 )
RHS = 2cosAcos3A
= 2cos 45° cos 3( 45° )
= 2cos45cos135°
= 2co45° cos( 90 + 45° )
= 2cos45°[ -sin 45° ]
= - 2sin45cos45
= - sin ( 2×45 )
= - sin90°
= 0
Therefore ,
LHS = RHS
If A = 45° then
sin2A = 2cosAcos3A
••••
Here I am using A instead of theta.
A = 45° ( given )
LHS = sin2A
= sin( 2× 45° )
= sin90°
= 0 ----( 1 )
RHS = 2cosAcos3A
= 2cos 45° cos 3( 45° )
= 2cos45cos135°
= 2co45° cos( 90 + 45° )
= 2cos45°[ -sin 45° ]
= - 2sin45cos45
= - sin ( 2×45 )
= - sin90°
= 0
Therefore ,
LHS = RHS
If A = 45° then
sin2A = 2cosAcos3A
••••
Similar questions