Math, asked by srijangupta2047, 1 month ago

If theta =pi radian(c)/4 and length=44 cm then find the value of r

Answers

Answered by prince5132
24

GIVEN :-

  • Value of ∅ = π/4.
  • Length of Arc of circle = 44 cm.

TO FIND :-

  • The radius of the circle ( r ).

SOLUTION :-

As we know that the length of the arc of the circle is given by,

 \boxed{ \implies \:  \sf \: length \:  = 2\pi r \: x \:  \dfrac{ \theta}{360 ^{ \circ} } }

Substitute all the given values,

\implies \:  \sf44 = 2 \times  \dfrac{22}{7}  \times r \times  \dfrac{ \bigg( \dfrac{\pi}{4} \bigg) }{360}  \\

As we know that ,π = 180° .

\implies \:  \sf44 =  \dfrac{44}{7} \times  r \times \dfrac{ \bigg( \dfrac{180}{4} \bigg) }{360}   \\

\implies \:  \sf \dfrac{44 \times 7}{44}  = r \times  \bigg( \dfrac{45}{360} \bigg) \\

\implies \:  \sf7 = r \times  \dfrac{1}{8}  \\

 \bf{ \underline{ \boxed{\implies \:  \sf \: r \:  = 56 \: cm.}}}


amansharma264: Great
Answered by tname3345
9

Step-by-step explanation:

given :

  • r value = π/4

  • circle length = 44

to find :

  • value of radius = ?

  • value of radius = ?

formula :

l = 2π r × 0/360

solution :

  • length = 2× 22/7 × radius × ( π/4 ) / 360

  • length = 44/7 × radius × (180/4)/360

  • length = 44× 7/ 44 = radius× (45/360)

  • length = radius × 1/8

  • value of radius = 56
Similar questions