Math, asked by cutybabystar6381, 1 year ago

If three non parallel sides of a trapezium are equal,prove that it is a cyclic

Answers

Answered by tinu21
0
Let the trapezium ABCD be isosceles and the parallel sides be AB and CD. The equal length non-parallel sides are BC, DA. The angles ∠DAB and ∠CDAare supplementary in the parallel lines so ∠DAB+∠CDA=π

The trapezium is symmetric so the angles ∠DAB and ∠ABCare equal.

So we have ∠ABC+∠CDA=π, i.e. we have opposite angles in the trapezium add up to ππ. This is necessary and sufficient for a quadrilateral to be cyclic.

For a visual illustration, draw a isosceles trapezium, then draw the perpendicular bisectors of the two non-parallel sides. Think about the distance from the point where the bisectors intersect and each of the vertices of the trapezium.

i hope its help you
mark brainliest
Answered by Anonymous
0

Hello mate =_=

____________________________

Solution:

It is given that ABCD is a trapezium with AB∥CD and AD=BC

We need to prove that ABCD is a cyclic quadrilateral.

Construction: Draw AM⊥CD and BN⊥CD

In ∆AMD and ∆BNC, we have

AD=BC            (Given)

∠AMD=∠BNC          (Each equal to 90°)

AM=BN        (Distance between two parallel lines is constant.)

Therefore, by RHS congruence rule, we have ∆AMD≅∆BNC

⇒∠D=∠C        (Corresponding parts of congruent triangles are equal)   ........ (1)

We also have ∠A+∠D=180′      (Co-interior angles, AB∥CD)     ......... (2)

From (1) and (2), we can say that ∠A+∠C=180°

⇒ ABCD is a cyclic quadrilateral.

(If the sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.)

I hope, this will help you.

Thank you______❤

_____________________________❤

Attachments:
Similar questions