Math, asked by gubachibgm, 1 month ago

if three resistance 2ohm, 3ohm, 5ohm when they are connected in parllel the equivalent resistance of three resistanceis​

Answers

Answered by WildCat7083
71

As we know,

The formula for parallel resistance is:-

 \large \frak \red{ \frac{1}{r}  } =   \tt\frac{1}{r}  + \frac{1}{r}  + \frac{1}{r}

So,

 \tt \: \frac{ 1  }{ 2  }  + \frac{ 1  }{ 3  }  + \frac{ 1  }{ 5  }

  • Least common multiple of 2 and 3 is 6.Convert  \tt\frac{1}{2}  \: and \:  \frac{1}{3} to fractions with denominator 6.

 \tt\frac{3}{6}+\frac{2}{6}+\frac{1}{5}

  • Since  \tt\frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.

 \tt\frac{3+2}{6}+\frac{1}{5} \\   \\  \tt\frac{5}{6}+\frac{1}{5}

  • Least common multiple of 6 and 5 is 30. Convert  \tt \: \frac{5}{6} and \frac{1}{5} to fractions with denominator 30.

 \tt\frac{25}{30}+\frac{6}{30}  \\  \\  \tt\frac{25+6}{30} \\  \\  \tt\frac{31}{30}\approx 1.033333333 \\  \\  \large \frak \red{resistance = 1.033 ohm}

Mark @Potato95 as brainliest (: pls

\huge\bold{ \underline{ \underline{ {@WildCat7083}}}}

Answered by Potato95
115

As we know,

\tt\purple{ \frac{1}{r_0}  } =   \tt\frac{1}{r_1}  + \frac{1}{r}_2  + \frac{1}{r_3}

So,

⇉ \tt \frac{ 1  }{ 2  }  + \frac{ 1  }{ 3  }  + \frac{ 1  }{ 5  }

⇉ \tt\frac{3}{6}+\frac{2}{6}+\frac{1}{5}

 ⇉\tt\frac{3+2}{6}+\frac{1}{5}

 ⇉\tt\frac{5}{6}+\frac{1}{5}

 ⇉\tt\frac{25}{30}+\frac{6}{30}

 ⇉\tt\frac{25+6}{30}

  ⇉\tt\frac{31}{30}\approx 1.033333333

 \large \frak \purple{resistance = 1.033 ohm}

Similar questions