Math, asked by khanujaamit, 10 months ago

If three vertices of a triangle are(2,0), (6,3) , (-4,5), find the coordinates of the centroid of the triangle​

Answers

Answered by SparklingBoy
39

GENERALLY:-)

We know that centroid(x,y)of the Triangle formed by joining three points

A(x1, y2), B(x2, y2) and C(x3, y3)

is given by

x =  \dfrac{x_1 + x_2 + x_3}{3}  \\ and \\ y =  \dfrac{y_1 + y_2 + y_3}{3}

So,

ln the given question coordinates of vertex

of the triangle are (2, 0) , (6, 3) , (-4,5)

coordinates of centroid will be given by

x =  \frac{2 + 6 - 4}{3}  \\  \\ x =  \frac{4}{3}  \\ and \\  \\ y =  \frac{0 + 3 + 5}{3}  \\  \\ y =  \frac{8}{3}

So,

centroid of the triangle is given by

centroid = ( \dfrac{4}{3} , \dfrac{8}{3} )

Answered by Anonymous
196

\bold{\underline{\underline{\huge{\sf{AnsWer:}}}}}

Coordinates of the centroid :

\sf{(x,y)\:=\:{\dfrac{4}{3}}},{\dfrac{8}{3}}

\bold{\underline{\underline{\large{\sf{StEp\:by\:stEp\:explanation:}}}}}

GiVeN :

  • Three Vertices Of Triangle :
  1. A ( 2,0 )
  2. B ( 6,3 )
  3. C ( -4,5 )

To FiNd :

  • The coordinates of the centroid of the triangle

SoLuTiOn :

Let's consider Δ ABC.

Let the coordinates of the centroid of the Δ ABC be (x, y)

Where,

  • Point of vertice A (2,0)
  1. Let \sf{x_1} = 2
  2. Let \sf{y_1} = 0
  • Point of vertice B (6,3)
  1. Let \sf{x_2} = 6
  2. Let \sf{y_2} = 3
  • Point of vertice C (-4,5)
  1. Let \sf{x_3} = -4
  2. Let \sf{y_3} = 5

FoRmUlA :

\sf{\large{\boxed{\red{\sf{(x,y)\:=\:{\dfrac{x_1\:+\:x_2\:+\:x_3\:}{3}},{\dfrac{y_1\:+\:y_2\:+\:y_3}{3}}}}}}}

Block in the values,

\longrightarrow\sf{(x,y)\:=\:{\dfrac{2\:+\:6\:+\:(-4)}{3}}},{\dfrac{0\:+\:3\:+\:5}{3}}

\longrightarrow\sf{(x,y)\:=\:{\dfrac{8\:+(-4)}{3}}},{\dfrac{3\:+\:5}{3}}

\longrightarrow\sf{(x,y)\:=\:{\dfrac{4}{3}}},{\dfrac{8}{3}}

° Coordinates of centroid of Δ ABC,

  • x = \sf{\dfrac{4}{3}}
  • y = \sf{\dfrac{8}{3}}
Similar questions