if three zeroes of a cubic Polynomial are 2,4 and 5 find the cubic
polynomial.
Answers
EXPLANATION.
Three zeroes of a cubic polynomial are 2, 4, 5.
As we know that,
Let, us assume that.
⇒ α = 2, β = 4, γ = 5.
General equation of cubic polynomial,
⇒ x³ - (α + β + γ)x² + (αβ + βγ + γα)x - αβγ.
Sum of zeroes of a cubic polynomial.
⇒ α + β + γ = -b/a.
⇒ 2 + 4 + 5 = 11.
Products of zeroes of a cubic polynomial two at a time.
⇒ αβ + βγ + γα = c/a.
⇒ (2)(4) + (4)(5) + (5)(2).
⇒ 8 + 20 + 10 = 38.
Products of zeroes of a cubic polynomial.
⇒ αβγ = -d/a.
⇒ (2)(4)(5) = 40.
Put this value in equation, we get.
⇒ x³ - (11)x² + (38)x - 40.
⇒ x³ - 11x² + 38x - 40 = 0.
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ Sum of zeroes taken one at a time,
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ Sum of the zeroes taken two at a time.
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ Product of zeroes
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ Now, cubic polynomial is given by
☆ On substituting the values, we get
─━─━─━─━─━─━─━─━─━─━─━─━─