Math, asked by tripathijyotima1, 4 months ago

if three zeroes of a cubic Polynomial are 2,4 and 5 find the cubic
polynomial.​​

Answers

Answered by amansharma264
13

EXPLANATION.

Three zeroes of a cubic polynomial are 2, 4, 5.

As we know that,

Let, us assume that.

⇒ α = 2, β = 4, γ = 5.

General equation of cubic polynomial,

⇒ x³ - (α + β + γ)x² + (αβ + βγ + γα)x - αβγ.

Sum of zeroes of a cubic polynomial.

⇒ α + β + γ = -b/a.

⇒ 2 + 4 + 5 = 11.

Products of zeroes of a cubic polynomial two at a time.

⇒ αβ + βγ + γα = c/a.

⇒ (2)(4) + (4)(5) + (5)(2).

⇒ 8 + 20 + 10 = 38.

Products of zeroes of a cubic polynomial.

⇒ αβγ = -d/a.

⇒ (2)(4)(5) = 40.

Put this value in equation, we get.

⇒ x³ - (11)x² + (38)x - 40.

⇒ x³ - 11x² + 38x - 40 = 0.

Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf Given  \:\: zeroes \: of \: cubic \: polynomial : \begin{cases} &\sf{ \alpha  = 2} \\ &\sf{ \beta  = 4}\\ &\sf{ \gamma  = 5} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf To \:  Find :-  \begin{cases} &\sf{cubic \: polynomial}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 1 }}

☆ Sum of zeroes taken one at a time,

\sf \:  ⟼ \: S_1 \:  =  \alpha +   \beta  +  \gamma

\sf \:  ⟼ \: S_1 \:  = 2 + 4 + 5

\sf \:  ⟼ \: S_1 = 11

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 2 }}

☆ Sum of the zeroes taken two at a time.

\sf \:  ⟼ \: S_2 \:  =  \:  \alpha  \beta +   \beta  \gamma  +  \gamma  \alpha

\sf \:  ⟼ \: S_2 = 2 \times 4 + 4 \times 5 + 5 \times 2

\sf \:  ⟼ \: S_2 = 8 + 20 + 10 = 38

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 3 }}

☆ Product of zeroes

\sf \:  ⟼ \: S_3 =  \alpha  \beta  \gamma

\sf \:  ⟼ \: S_3 = 2 \times 4 \times 5 = 40

\large\underline{\bold{❥︎Step :- 4 }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf So,  \: we  \: get \: \begin{cases} &\sf{S_1 \:  = 11} \\ &\sf{S_2 \:  = 38}\\ &\sf{S_3 \:  = 40} \end{cases}\end{gathered}\end{gathered}

\large\underline{\bold{❥︎Step :- 5 }}

☆ Now, cubic polynomial is given by

\sf \:  ⟼ \: f(x) \:  = k( {x}^{3}  - S_1 {x}^{2}  + S_2x - S_3)

\sf \:  ⟼\: where \: k \: is \: non \: zero \: real \: number

☆ On substituting the values, we get

\bf \:  ⟼  \: f(x) =  k({x}^{3}  - 11 {x}^{2}  + 38x - 40)

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions