Math, asked by ramanaiducherukuru, 8 months ago

if tn respresents nth term of an AP t2 + t5 - t3=10 and t2 + t9 = 17, find it's first term and common difference.​

Answers

Answered by Anonymous
4

\sf\red{\underline{\underline{Answer:}}}

\sf{First \ term \ is \ 13 \ and \ common \ difference}

\sf{is \ -1.}

\sf\orange{Given:}

\sf{In \ an \ AP}

\sf{\implies{t2+t5-t3=10}}

\sf{\implies{t2+t9=17}}

\sf\pink{To \ find:}

\sf{Find \ the \ first \ term \ and \ common \ difference.}

\sf\green{\underline{\underline{Solution:}}}

\boxed{\sf{tn=a+(n-1)d}}

\sf{According \ to \ the \ first \ condition.}

\sf{t2+t5-t3=10}

\sf{\therefore{(a+d)+(a+4d)-(a+2d)=10}}

\sf{\therefore{a+3d=10...(1)}}

\sf{According \ to \ the \ second \ condition.}

\sf{t2+t9=17}

\sf{\therefore{(a+d)+(a+8d)=17}}

\sf{\therefore{2a+9d=17...(2)}}

\sf{Multiply \ equation \ (1) \ by \ (3)}

\sf{3a+9d=30...(3)}

\sf{Subtract \ equation \ (2) \ from \ equation \ (3)}

\sf{3a+9d=30}

\sf{-}

\sf{2a+9d=17}

__________________

\boxed{\sf{\therefore{a=13}}}

\sf{Substitute \ a=13 \ in \ equation \ (1)}

\sf{13+3d=10}

\sf{3d=10-13}

\sf{3d=-3}

\sf{d=\frac{-3}{3}}

\boxed{\sf{d=-1}}

\sf\purple{\tt{\therefore{First \ term \ is \ 13 \ and \ common \ difference}}}

\sf\purple{\tt{is \ -1.}}

Similar questions
Hindi, 4 months ago