Math, asked by hemabsrkv15, 8 months ago

If total Surface area of a cylinder is 40πcm² and radius is 4 cm find the height

Answers

Answered by poonammaurya02
0

Answer:

TSA of cylinder = 2πr(r+h)

40π=2π*4(4+h)

40π/8π=4+h

5=4+h

h= 5-4=1cm

Answered by Anonymous
0

\bf\huge\blue{\underline{\underline{ Question : }}}

If total Surface area of a cylinder is 40πcm² and radius is 4 cm, then find the height.

\bf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • \tt\: Total\:Surface\:Area\:_{(Cylinder)} = 40 \pi cm^{2}
  • \tt\: Radius\:_{(Cylinder)} = 4 cm.

To find,

  • \tt\:Height_{(Cylinder)} = ? cm.

Formula :

\tt\red{:\leadsto Total\:Surface\:Area\:_{(Cylinder)} = 2 \pi r(r + h)}

  • Substitute the values.

\bf\:\implies 2 \times \pi \times 4 (4 + h) = 40 \times  \pi

\bf\:\implies 8 \times \pi  (4 + h) = 40  \times \pi

\bf\:\implies   (4 + h) = \cfrac{40 \times \pi}{8 \times \pi}

\bf\:\implies 4 + h = 5

\bf\:\implies  h = 5 - 4

\bf\:\implies  h = 1

Verification,

  • Substitute all the values in the formula.

\bf\:\implies 2 \times \pi \times 4(4 + 1)

\bf\:\implies 8 \times \pi (5)

\bf\:\implies 40 \pi

# Hence,it was verified.

\underline{\boxed{\rm{\purple{\therefore Height\:_{(Cylinder)} = 1 \:cm. }}}}\:\orange{\bigstar}

More information :

Formulae related to Cylinder :

➡ TSA :- 2πr(r + h)

➡ CSA :- πrh

➡ Volume :- πr²h

______________________________________________________

Similar questions